A deep dive into location-based communities in social discovery networks
نویسندگان
چکیده
Location-based social discovery networks (LBSD) is an emerging category of location-based social networks (LBSN) that are specifically designed to enable users to discover and communicate with nearby people. In this paper, we present the first measurement study of the characteristics and evolution of location-based communities which are based on a social discovery network and geographic proximity. We measure and analyse more than 176K location-based communities with over 1.4 million distinct members of a popular social discovery network and more than 46 million locations. We characterise the evolution of the communities and study the user behaviour in LBSD by analysing the mobility features of users belonging to communities in comparison to non-community members. Using observed spatio-temporal similarity features, we build and evaluate a classifier to predict location-based community membership solely based on user mobility information. Crown Copyright © 2016 Published by Elsevier B.V. All rights reserved.
منابع مشابه
Detecting Overlapping Communities in Social Networks using Deep Learning
In network analysis, a community is typically considered of as a group of nodes with a great density of edges among themselves and a low density of edges relative to other network parts. Detecting a community structure is important in any network analysis task, especially for revealing patterns between specified nodes. There is a variety of approaches presented in the literature for overlapping...
متن کاملDesign an Efficient Community-based Message Forwarding Method in Mobile Social Networks
Mobile social networks (MSNs) are a special type of Delay tolerant networks (DTNs) in which mobile devices communicate opportunistically to each other. One of the most challenging issues in Mobile Social Networks (MSNs) is to design an efficient message forwarding scheme that has a high performance in terms of delivery ratio, latency and communication cost. There are two different approaches fo...
متن کاملOverlapping Community Detection in Social Networks Based on Stochastic Simulation
Community detection is a task of fundamental importance in social network analysis. Community structures enable us to discover the hidden interactions among the network entities and summarize the network information that can be applied in many applied domains such as bioinformatics, finance, e-commerce and forensic science. There exist a variety of methods for community detection based on diffe...
متن کاملMining Overlapping Communities in Real-world Networks Based on Extended Modularity Gain
Detecting communities plays a vital role in studying group level patterns of a social network and it can be helpful in developing several recommendation systems such as movie recommendation, book recommendation, friend recommendation and so on. Most of the community detection algorithms can detect disjoint communities only, but in the real time scenario, a node can be a member of more than one ...
متن کاملDetecting Location-Centric Communities Using Social-Spatial Links with Temporal Constraints
Community detection on social networks typically aims to cluster users into different communities based on their social links. The increasing popularity of Location-based Social Networks offers the opportunity to augment these social links with spatial information, for detecting location-centric communities that frequently visit similar places. Such location-centric communities are important to...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Computer Communications
دوره 100 شماره
صفحات -
تاریخ انتشار 2017